Flexner JB, Flexner LB, Stellar E. Memory in mice as affected by intracerebral puromycin. Science. 1963;141:57–9.
Article
CAS
Google Scholar
Costa-Mattioli M, Gobert D, Stern E, Gamache K, Colina R, Cuello C, Sossin W, Kaufman R, Pelletier J, Rosenblum K, et al. eIF2α phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell. 2007;129:195–206.
Article
CAS
Google Scholar
Sharma V, Sood R, Khlaifia A, Eslamizade MJ, Hung T-Y, Lou D, Asgarihafshejani A, Lalzar M, Kiniry SJ, Stokes MP, et al. eIF2α controls memory consolidation via excitatory and somatostatin neurons. Nature. 2020;586:412–6.
Article
CAS
Google Scholar
Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science. 2016;352:1413–6.
Article
CAS
Google Scholar
Hoeffer CA, Cowansage KK, Arnold EC, Banko JL, Moerke NJ, Rodriguez R, Schmidt EK, Klosi E, Chorev M, Lloyd RE, et al. Inhibition of the interactions between eukaryotic initiation factors 4E and 4G impairs long-term associative memory consolidation but not reconsolidation. Proc Natl Acad Sci. 2011;108:3383–8.
Article
CAS
Google Scholar
Rom E, Kim HC, Gingras A-C, Marcotrigiano J, Favre D, Olsen H, Burley SK, Sonenberg N. Cloning and characterization of 4EHP, a novel mammalian eIF4E-related cap-binding protein. J Biol Chem. 1998;273:13104–9.
Article
CAS
Google Scholar
Uniacke J, Holterman CE, Lachance G, Franovic A, Jacob MD, Fabian MR, Payette J, Holcik M, Pause A, Lee S. An oxygen-regulated switch in the protein synthesis machinery. Nature. 2012;486:126–9.
Article
CAS
Google Scholar
Chapat C, Jafarnejad SM, Matta-Camacho E, Hesketh GG, Gelbart IA, Attig J, Gkogkas CG, Alain T, Stern-Ginossar N, Fabian MR, et al. Cap-binding protein 4EHP effects translation silencing by microRNAs. Proc Natl Acad Sci. 2017;114:5425–30.
Article
CAS
Google Scholar
Jafarnejad SM, Chapat C, Matta-Camacho E, Gelbart IA, Hesketh GG, Arguello M, Garzia A, Kim S-H, Attig J, Shapiro M, et al. Translational control of ERK signaling through miRNA/4EHP-directed silencing. Elife. 2018;7:e35034.
Article
Google Scholar
Zuberek J, Kubacka D, Jablonowska A, Jemielity J, Stepinski J, Sonenberg N, Darzynkiewicz E. Weak binding affinity of human 4EHP for mRNA cap analogs. RNA. 2007;13:691–7.
Article
CAS
Google Scholar
Wei C-W, Luo T, Zou S-S, Wu A-S. Research progress on the roles of microRNAs in governing synaptic plasticity, learning and memory. Life Sci. 2017;188:118–22.
Article
CAS
Google Scholar
Wiebe S, Meng XQ, Kim S-H, Zhang X, Lacaille J-C, Aguilar-Valles A, Sonenberg N. The eIF4E homolog 4EHP (eIF4E2) regulates hippocampal long-term depression and impacts social behavior. Mol Autism. 2020;11:92.
Article
CAS
Google Scholar
Zhang Y, Huang B, Wang HY, Chang A, Zheng XFS. Emerging role of MicroRNAs in mTOR signaling. Cell Mol Life Sci. 2017;74:2613–25.
Article
CAS
Google Scholar
Wang P, Liu XM, Ding L, Zhang XJ, Ma ZL. mTOR signaling-related MicroRNAs and Cancer involvement. J Cancer. 2018;9:667–73.
Article
Google Scholar
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Ghani E, Karimazar M, Muro A, Nguewa P, Manzano-Román R. miRNAs in the regulation of mTOR signaling and host immune responses: the case of Leishmania infections. Acta Trop. 2022;231: 106431.
Article
CAS
Google Scholar
Martin EC, Rhodes LV, Elliott S, Krebs AE, Nephew KP, Flemington EK, Collins-Burow BM, Burow ME. microRNA regulation of mammalian target of rapamycin expression and activity controls estrogen receptor function and RAD001 sensitivity. Mol Cancer. 2014;13:229.
Article
Google Scholar
Nazari N, Jafari F, Ghalamfarsa G, Hadinia A, Atapour A, Ahmadi M, Dolati S, Rostamzadeh D. The emerging role of microRNA in regulating the mTOR signaling pathway in immune and inflammatory responses. Immunol Cell Biol. 2021;99:814–32.
Article
CAS
Google Scholar
Tsujimura K, Irie K, Nakashima H, Egashira Y, Fukao Y, Fujiwara M, Itoh M, Uesaka M, Imamura T, Nakahata Y, et al. miR-199a links MeCP2 with mTOR signaling and its dysregulation leads to rett syndrome phenotypes. Cell Rep. 2015;12:1887–901.
Article
CAS
Google Scholar
Shoji H, Takao K, Hattori S, Miyakawa T. Age-related changes in behavior in C57BL/6J mice from young adulthood to middle age. Mol Brain. 2016;9:11.
Article
Google Scholar
Morita M, Ler LW, Fabian MR, Siddiqui N, Mullin M, Henderson VC, Alain T, Fonseca BD, Karashchuk G, Bennett CF, et al. A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development. Mol Cell Biol. 2012;32:3585–93.
Article
CAS
Google Scholar
Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ, Mayford M, Kandel ER, Tonegawa S. Subregion- and cell type-restricted gene knockout in mouse brain. Cell. 1996;87:1317–26.
Article
CAS
Google Scholar
Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, Kvitsani D, Fu Y, Lu J, Lin Y, et al. A resource of cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron. 2011;71:995–1013.
Article
CAS
Google Scholar
De Gregorio D, Popic J, Enns JP, Inserra A, Skalecka A, Markopoulos A, Posa L, Lopez-Canul M, Qianzi H, Lafferty CK, et al.: Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. In: Proceedings of the National Academy of Sciences of the United States of America 2021, 118.
Morris RG, Garrud P, Rawlins JN, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297:681–3.
Article
CAS
Google Scholar
Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JLR, Jones KR. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci. 2002;22:6309–14.
Article
CAS
Google Scholar
Hoeffer CA, Tang W, Wong H, Santillan A, Patterson RJ, Martinez LA, Tejada-Simon MV, Paylor R, Hamilton SL, Klann E. Removal of FKBP12 enhances mTOR-Raptor interactions, LTP, memory, and perseverative/repetitive behavior. Neuron. 2008;60:832–45.
Article
CAS
Google Scholar
Wiebe S, Nagpal A, Truong VT, Park J, Skalecka A, He AJ, Gamache K, Khoutorsky A, Gantois I, Sonenberg N. Inhibitory interneurons mediate autism-associated behaviors via 4E-BP2. Proc Natl Acad Sci USA. 2019;116:18060–7.
Article
CAS
Google Scholar
Nestler EJ, Hyman SE, Holtzman DM, Malenka RC. Higher cognitive function and behavioral control. Molecular neuropharmacology: a foundation for clinical neuroscience, 3 edn. McGraw Hill. 2014.
Banko JL, Merhav M, Stern E, Sonenberg N, Rosenblum K, Klann E. Behavioral alterations in mice lacking the translation repressor 4E-BP2. Neurobiol Learn Mem. 2007;87:248–56.
Article
CAS
Google Scholar
Shrestha P, Ayata P, Herrero-Vidal P, Longo F, Gastone A, LeDoux JE, Heintz N, Klann E. Cell-type-specific drug-inducible protein synthesis inhibition demonstrates that memory consolidation requires rapid neuronal translation. Nat Neurosci. 2020;23:281–92.
Article
CAS
Google Scholar
Shrestha P, Shan Z, Mamcarz M, Ruiz KSA, Zerihoun AT, Juan C-Y, Herrero-Vidal PM, Pelletier J, Heintz N, Klann E. Amygdala inhibitory neurons as loci for translation in emotional memories. Nature. 2020;586(7829):407–11.
Article
CAS
Google Scholar
Zhu S, Henninger K, McGrath BC, Cavener DR. PERK regulates working memory and protein synthesis-dependent memory flexibility. PLoS ONE. 2016;11: e0162766.
Article
Google Scholar
Trinh MA, Kaphzan H, Wek RC, Pierre P, Cavener DR, Klann E. Brain-specific disruption of the eIF2α kinase PERK decreases ATF4 expression and impairs behavioral flexibility. Cell Rep. 2012;1:676–88.
Article
CAS
Google Scholar
Friedman L, Sterling A. A review of language, executive function, and intervention in autism spectrum disorder. Semin Speech Lang. 2019;40:291–304.
Article
Google Scholar
Rabiee A, Vasaghi-Gharamaleki B, Samadi SA, Amiri-Shavaki Y, Alaghband-Rad J. Working memory deficits and its relationship to autism spectrum disorders. Iran J Med Sci. 2020;45:100–9.
Google Scholar
Funabiki Y, Shiwa T. Weakness of visual working memory in autism. Autism Res. 2018;11:1245–52.
Article
Google Scholar
Leszczynski M. How does hippocampus contribute to working memory processing? Front Hum Neurosci. 2011;5:168.
Article
Google Scholar
Lara AH, Wallis JD. The role of prefrontal cortex in working memory: a mini review. Front Syst Neurosci. 2015;9:173.
Article
Google Scholar
Nectow AR, Moya MV, Ekstrand MI, Mousa A, McGuire KL, Sferrazza CE, Field BC, Rabinowitz GS, Sawicka K, Liang Y, et al. Rapid molecular profiling of defined cell types using viral TRAP. Cell Rep. 2017;19:655–67.
Article
CAS
Google Scholar
Ingolia NT. Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet. 2014;15:205.
Article
CAS
Google Scholar