Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.
Article
CAS
PubMed
Google Scholar
Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol. 2005;25(1):5–23.
Article
PubMed
Google Scholar
Wilhelm I, Fazakas C, Krizbai IA. In vitro models of the blood–brain barrier. Acta Neurobiol Exp. 2011;71(1):113–28.
Google Scholar
Furtado D, Bjornmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater. 2018;30(46): e1801362.
Article
PubMed
CAS
Google Scholar
Zlokovic BV, Zlokovic BV, Apuzzo MLJ. Strategies to circumvent vascular barriers of the central nervous system. Neurosurgery. 1998;43(4):877–8.
Article
CAS
PubMed
Google Scholar
Daneman R, Prat A. The blood–brain barrier. Cold Spring Harb Perspect Biol. 2015;7(1): a020412.
Article
PubMed
PubMed Central
Google Scholar
Lee JP, Jeyakumar M, Gonzalez R, Takahashi H, Lee PJ, Baek RC, Clark D, Rose H, Fu G, Clarke J, et al. Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med. 2007;13(4):439–47.
Article
CAS
PubMed
Google Scholar
Boese AC, Le QE, Pham D, Hamblin MH, Lee JP. Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res Ther. 2018;9(1):154.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boese AC, Hamblin MH, Lee JP. Neural stem cell therapy for neurovascular injury in Alzheimer’s disease. Exp Neurol. 2020;324: 113112.
Article
CAS
PubMed
Google Scholar
Kaneko Y, Tajiri N, Staples M, Reyes S, Lozano D, Sanberg PR, Freeman TB, van Loveren H, Kim SU, Borlongan CV. Bone marrow-derived stem cell therapy for metastatic brain cancers. Cell Transpl. 2015;24(4):625–30.
Article
Google Scholar
Banks WA. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15(4):275–92.
Article
CAS
PubMed
Google Scholar
Banks WA. Drug delivery to the brain in Alzheimer’s disease: consideration of the blood–brain barrier. Adv Drug Deliv Rev. 2012;64(7):629–39.
Article
CAS
PubMed
Google Scholar
Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12(12):723–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krol S, Macrez R, Docagne F, Defer G, Laurent S, Rahman M, Hajipour MJ, Kehoe PG, Mahmoudi M. Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem Rev. 2013;113(3):1877–903.
Article
CAS
PubMed
Google Scholar
Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.
Article
CAS
PubMed
Google Scholar
Liu DZ, Ander BP, Xu H, Shen Y, Kaur P, Deng W, Sharp FR. Blood–brain barrier breakdown and repair by Src after thrombin-induced injury. Ann Neurol. 2010;67(4):526–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian W, Sawyer A, Kocaoglu FB, Kyriakides TR. Astrocyte-derived thrombospondin-2 is critical for the repair of the blood–brain barrier. Am J Pathol. 2011;179(2):860–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36(3):437–49.
Article
CAS
PubMed
Google Scholar
Bernacki J, Dobrowolska A, Nierwińska K, Małecki A. Physiology and pharmacological role of the blood–brain barrier. Pharmacol Rep. 2008;60(5):600–22.
CAS
PubMed
Google Scholar
Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009;335(1):75–96.
Article
PubMed
Google Scholar
Wolburg H, Lippoldt A. Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol. 2002;38(6):323–37.
Article
CAS
PubMed
Google Scholar
Löscher W, Potschka H. Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86–98.
Article
PubMed
PubMed Central
Google Scholar
Mittapalli RK, Manda VK, Adkins CE, Geldenhuys WJ, Lockman PR. Exploiting nutrient transporters at the blood–brain barrier to improve brain distribution of small molecules. Ther Deliv. 2010;1(6):775–84.
Article
CAS
PubMed
Google Scholar
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.
Article
CAS
PubMed
Google Scholar
Sims DE. The pericyte—a review. Tissue Cell. 1986;18(2):153–74.
Article
CAS
PubMed
Google Scholar
Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006;443(7112):700–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coureuil M, Lécuyer H, Bourdoulous S, Nassif X. A journey into the brain: insight into how bacterial pathogens cross blood–brain barriers. Nat Rev Microbiol. 2017;15(3):149–59.
Article
CAS
PubMed
Google Scholar
McArthur S, Loiola RA, Maggioli E, Errede M, Virgintino D, Solito E. The restorative role of annexin A1 at the blood–brain barrier. Fluids Barriers CNS. 2016;13(1):17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF. Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol. 2011;287:1–41.
Article
CAS
PubMed
Google Scholar
Noell S, Wolburg-Buchholz K, Mack AF, Beedle AM, Satz JS, Campbell KP, Wolburg H, Fallier-Becker P. Evidence for a role of dystroglycan regulating the membrane architecture of astroglial endfeet. Eur J Neurosci. 2011;33(12):2179–86.
Article
PubMed
PubMed Central
Google Scholar
Thal DR. The role of astrocytes in amyloid β-protein toxicity and clearance. Exp Neurol. 2012;236(1):1–5.
Article
CAS
PubMed
Google Scholar
Asgari M, de Zélicourt D, Kurtcuoglu V. How astrocyte networks may contribute to cerebral metabolite clearance. Sci Rep. 2015;5:15024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diamond B, Honig G, Mader S, Brimberg L, Volpe B. Brain-reactive antibodies and disease. Annu Rev Immunol. 2013;31:345–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanchette M, Daneman R. Formation and maintenance of the BBB. Mech Dev. 2015;138(Pt 1):8–16.
Article
CAS
PubMed
Google Scholar
Wu C, Ivars F, Anderson P, Hallmann R, Vestweber D, Nilsson P, Robenek H, Tryggvason K, Song J, Korpos E, et al. Endothelial basement membrane laminin alpha5 selectively inhibits T lymphocyte extravasation into the brain. Nat Med. 2009;15(5):519–27.
Article
CAS
PubMed
Google Scholar
Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12(9):623–35.
Article
CAS
PubMed
Google Scholar
Keaney J, Campbell M. The dynamic blood–brain barrier. FEBS J. 2015;282(21):4067–79.
Article
CAS
PubMed
Google Scholar
Correale J, Villa A. Cellular elements of the blood–brain barrier. Neurochem Res. 2009;34(12):2067.
Article
CAS
PubMed
Google Scholar
Yao Y, Chen ZL, Norris EH, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun. 2014;5:3413.
Article
PubMed
CAS
Google Scholar
Korn T, Kallies A. T cell responses in the central nervous system. Nat Rev Immunol. 2017;17(3):179–94.
Article
CAS
PubMed
Google Scholar
Coisne C, Engelhardt B. Tight junctions in brain barriers during central nervous system inflammation. Antioxid Redox Signal. 2011;15(5):1285–303.
Article
CAS
PubMed
Google Scholar
Natale G, Limanaqi F, Busceti CL, Mastroiacovo F, Nicoletti F, Puglisi-Allegra S, Fornai F. Glymphatic system as a gateway to connect neurodegeneration from periphery to CNS. Front Neurosci. 2021;15:1–8.
Article
Google Scholar
Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J. The glymphatic system and waste clearance with brain aging: a review. Gerontology. 2019;65(2):106–19.
Article
PubMed
Google Scholar
Hershenhouse KS, Shauly O, Gould DJ, Patel KM. Meningeal lymphatics: a review and future directions from a clinical perspective. Neurosci Insights. 2019;14:1179069519889027.
Article
PubMed
PubMed Central
Google Scholar
Hauglund NL, Pavan C, Nedergaard M. Cleaning the sleeping brain—the potential restorative function of the glymphatic system. Curr Opin Physiol. 2020;15:1–6.
Article
Google Scholar
Yamazaki Y, Kanekiyo T. Blood–brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int J Mol Sci. 2017;18(9):1965.
Article
PubMed Central
CAS
Google Scholar
Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol. 2009;9(6):429–39.
Article
CAS
PubMed
Google Scholar
Kim YS, Joh TH. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp Mol Med. 2006;38(4):333–47.
Article
CAS
PubMed
Google Scholar
da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FR. The impact of microglial activation on blood–brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362.
Article
PubMed
PubMed Central
Google Scholar
Wright GJ, Puklavec MJ, Willis AC, Hoek RM, Sedgwick JD, Brown MH, Barclay AN. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity. 2000;13(2):233–42.
Article
CAS
PubMed
Google Scholar
Dong H, Zhang X, Qian Y. Mast cells and neuroinflammation. Med Sci Monit Basic Res. 2014;20:200–6.
Article
PubMed
PubMed Central
Google Scholar
Brown JM, Wilson TM, Metcalfe DD. The mast cell and allergic diseases: role in pathogenesis and implications for therapy. Clin Exp Allergy. 2008;38(1):4–18.
Article
CAS
PubMed
Google Scholar
Forsythe P. Mast cells in neuroimmune interactions. Trends Neurosci. 2019;42(1):43–55.
Article
CAS
PubMed
Google Scholar
Bachmann MF, Kopf M, Marsland BJ. Chemokines: more than just road signs. Nat Rev Immunol. 2006;6(2):159–64.
Article
CAS
PubMed
Google Scholar
Ito T, Carson WFT, Cavassani KA, Connett JM, Kunkel SL. CCR6 as a mediator of immunity in the lung and gut. Exp Cell Res. 2011;317(5):613–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obermeier B, Verma A, Ransohoff RM. The blood–brain barrier. Handb Clin Neurol. 2016;133:39–59.
Article
PubMed
Google Scholar
Lampron A, Elali A, Rivest S. Innate immunity in the CNS: redefining the relationship between the CNS and Its environment. Neuron. 2013;78(2):214–32.
Article
CAS
PubMed
Google Scholar
Pashenkov M, Huang YM, Kostulas V, Haglund M, Söderström M, Link H. Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain. 2001;124(Pt 3):480–92.
Article
CAS
PubMed
Google Scholar
Sonar SA, Lal G. Blood–brain barrier and its function during inflammation and autoimmunity. J Leukoc Biol. 2018;103(5):839–53.
Article
CAS
PubMed
Google Scholar
Lehnardt S. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia. 2010;58(3):253–63.
PubMed
Google Scholar
Greenwood J, Wang Y, Calder VL. Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1. Immunology. 1995;86(3):408–15.
CAS
PubMed
PubMed Central
Google Scholar
Takeshita Y, Ransohoff RM. Inflammatory cell trafficking across the blood–brain barrier: chemokine regulation and in vitro models. Immunol Rev. 2012;248(1):228–39.
Article
PubMed
PubMed Central
Google Scholar
Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: the role and consequences. Neurosci Res. 2014;79:1–12.
Article
CAS
PubMed
Google Scholar
Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. J Clin Invest. 2017;127(10):3577–87.
Article
PubMed
PubMed Central
Google Scholar
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood–brain barrier: from physiology to disease and back. Physiol Rev. 2019;99(1):21–78.
Article
CAS
PubMed
Google Scholar
Fowler MI, Weller RO, Heckels JE, Christodoulides M. Different meningitis-causing bacteria induce distinct inflammatory responses on interaction with cells of the human meninges. Cell Microbiol. 2004;6(6):555–67.
Article
CAS
PubMed
Google Scholar
Davis LE. Acute bacterial meningitis. Continuum. 2018;24(5):1264–83.
PubMed
Google Scholar
van de Beek D, Brouwer M, Hasbun R, Koedel U, Whitney CG, Wijdicks E. Community-acquired bacterial meningitis. Nat Rev Dis Primers. 2016;2(1):16074.
Article
PubMed
Google Scholar
Häuser S, Wegele C, Stump-Guthier C, Borkowski J, Weiss C, Rohde M, Ishikawa H, Schroten H, Schwerk C, Adam R. Capsule and fimbriae modulate the invasion of Haemophilus influenzae in a human blood-cerebrospinal fluid barrier model. Int J Med Microbiol. 2018;308(7):829–39.
Article
PubMed
CAS
Google Scholar
Al-Obaidi MMJ, Desa MNM. Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial-host interactions facilitate the bacterial pathogen invading the brain. Cell Mol Neurobiol. 2018;38(7):1349–68.
Article
CAS
PubMed
Google Scholar
Prasadarao NV, Blom AM, Villoutreix BO, Linsangan LC. A novel interaction of outer membrane protein A with C4b binding protein mediates serum resistance of Escherichia coli K1. J Immunol. 2002;169(11):6352–60.
Article
CAS
PubMed
Google Scholar
Iovino F, Engelen-Lee J-Y, Brouwer M, van de Beek D, van der Ende A, Valls Seron M, Mellroth P, Muschiol S, Bergstrand J, Widengren J, et al. pIgR and PECAM-1 bind to pneumococcal adhesins RrgA and PspC mediating bacterial brain invasion. J Exp Med. 2017;214(6):1619–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yau B, Hunt NH, Mitchell AJ, Too LK. Blood–brain barrier pathology and CNS outcomes in Streptococcus pneumoniae meningitis. Int J Mol Sci. 2018;19(11):3555.
Article
PubMed Central
CAS
Google Scholar
Mittal R, Prasadarao NV. gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis. Nat Commun. 2011;2:552.
Article
PubMed
CAS
Google Scholar
Doran KS, Liu GY, Nizet V. Group B streptococcal beta-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J Clin Invest. 2003;112(5):736–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pack AM. Epilepsy overview and revised classification of seizures and epilepsies. Continuum. 2019;25(2):306–21.
PubMed
Google Scholar
Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harbor Perspect Med. 2015;5(6):1.
Article
CAS
Google Scholar
Millichap JG, Aymat F. Treatment and prognosis of petit mal epilepsy. Pediatr Clin N Am. 1967;14(4):905–20.
Article
CAS
Google Scholar
Miyamoto H, Tatsukawa T, Shimohata A, Yamagata T, Suzuki T, Amano K, Mazaki E, Raveau M, Ogiwara I, Oba-Asaka A, et al. Impaired cortico-striatal excitatory transmission triggers epilepsy. Nat Commun. 2019;10(1):1917.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khazipov R. GABAergic synchronization in epilepsy. Cold Spring Harbor Perspect Med. 2016;6(2):8.
Article
CAS
Google Scholar
Rigau V, Morin M, Rousset M-C, de Bock F, Lebrun A, Coubes P, Picot M-C, Baldy-Moulinier M, Bockaert J, Crespel A, et al. Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain. 2007;130(7):1942–56.
Article
PubMed
Google Scholar
Tramoni-Negre E, Lambert I, Bartolomei F, Felician O. Long-term memory deficits in temporal lobe epilepsy. Revue Neurologique. 2017;173(7):490–7.
Article
CAS
PubMed
Google Scholar
Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet. 2019;393(10172):689–701.
Article
PubMed
Google Scholar
Kim SY, Buckwalter M, Soreq H, Vezzani A, Kaufer D. Blood–brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia. 2012;53(6):37–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G, Shapira M, Heinemann U, Friedman A, Kaufer D. Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. J Neurosci. 2009;29(28):8927–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SY, Buckwalter M, Soreq H, Vezzani A, Kaufer D. Blood–brain barrier dysfunction–induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia. 2012;53(s6):37–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
David Y, Cacheaux LP, Ivens S, Lapilover E, Heinemann U, Kaufer D, Friedman A. Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J Neurosci. 2009;29(34):10588–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JA, Tran ND, Wang SJ, Fisher MJ. Astrocyte regulation of human brain capillary endothelial fibrinolysis. Thromb Res. 2003;112(3):159–65.
Article
CAS
PubMed
Google Scholar
Zetterberg H, Blennow K. Fluid markers of traumatic brain injury. Mol Cell Neurosci. 2015;66(Pt B):99–102.
Article
CAS
PubMed
Google Scholar
Habgood MD, Bye N, Dziegielewska KM, Ek CJ, Lane MA, Potter A, Morganti-Kossmann C, Saunders NR. Changes in blood–brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci. 2007;25(1):231–8.
Article
CAS
PubMed
Google Scholar
Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6(7):393–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin E, Tsai S-J, Kuo P-H, Liu Y-L, Yang AC, Kao C-F. Association and interaction effects of Alzheimer’s disease-associated genes and lifestyle on cognitive aging in older adults in a Taiwanese population. Oncotarget. 2017;8(15):24077.
Article
PubMed
PubMed Central
Google Scholar
Szu JI, Obenaus A. Cerebrovascular phenotypes in mouse models of Alzheimer’s disease. J Cereb Blood Flow Metab. 2021;41(8):1821–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Y, Tan L, Yu J-T, Tan L. Tau in Alzheimer’s disease: mechanisms and therapeutic strategies. Curr Alzheimer Res. 2018;15(3):283–300.
Article
CAS
PubMed
Google Scholar
Boimel M, Grigoriadis N, Lourbopoulos A, Haber E, Abramsky O, Rosenmann H. Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp Neurol. 2010;224(2):472–85.
Article
CAS
PubMed
Google Scholar
Szaruga M, Veugelen S, Benurwar M, Lismont S, Sepulveda-Falla D, Lleo A, Ryan NS, Lashley T, Fox NC, Murayama S, et al. Qualitative changes in human γ-secretase underlie familial Alzheimer’s disease. J Exp Med. 2015;212(12):2003–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montagne A, Zhao Z, Zlokovic BV. Alzheimer’s disease: a matter of blood–brain barrier dysfunction? J Exp Med. 2017;214(11):3151–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marín-Muñoz J, Noguera-Perea MF, Gómez-Tortosa E, López-Motos D, Antequera-Torres M, Martínez-Herrada B, Manzanares-Sánchez S, Vivancos-Moreau L, Legaz-García A, Rábano-Gutiérrez Del Arroyo A, et al. Novel mutation (Gly212Val) in the PS2 gene associated with early-onset familial Alzheimer’s disease. J Alzheimer’s Dis. 2016;53(1):73–8.
Article
CAS
Google Scholar
Zlokovic BV. Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease. JAMA Neurol. 2013;70(4):440–4.
Article
PubMed
PubMed Central
Google Scholar
Halliday MR, Pomara N, Sagare AP, Mack WJ, Frangione B, Zlokovic BV. Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein e4 carriers and blood–brain barrier breakdown. JAMA Neurol. 2013;70(9):1198–200.
Article
PubMed
PubMed Central
Google Scholar
Suri S, Mackay CE, Kelly ME, Germuska M, Tunbridge EM, Frisoni GB, Matthews PM, Ebmeier KP, Bulte DP, Filippini N. Reduced cerebrovascular reactivity in young adults carrying the APOE ε4 allele. Alzheimer’s Dementia. 2015;11(6):648-657.e641.
Article
PubMed
Google Scholar
Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV. Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer’s disease. Brain Pathol (Zurich, Switzerland). 2013;23(3):303–10.
Article
Google Scholar
Zarranz JJ, Fernandez-Martinez M, Rodriguez O, Mateos B, Iglesias S, Baron JC. Iowa APP mutation-related hereditary cerebral amyloid angiopathy (CAA): a new family from Spain. J Neurol Sci. 2016;363:55–6.
Article
CAS
PubMed
Google Scholar
Saito S, Ihara M. Interaction between cerebrovascular disease and Alzheimer pathology. Curr Opin Psychiatry. 2016;29(2):168–73.
Article
PubMed
Google Scholar
Niedermeyer S, Murn M, Choi PJ. Respiratory failure in amyotrophic lateral sclerosis. Chest. 2019;155(2):401–8.
Article
PubMed
Google Scholar
Grad LI, Rouleau GA, Ravits J, Cashman NR. Clinical spectrum of amyotrophic lateral sclerosis (ALS). Cold Spring Harbor Perspect Med. 2017;7(8):a024117.
Article
CAS
Google Scholar
Al-Chalabi A, van den Berg LH, Veldink J. Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat Rev Neurol. 2017;13(2):96–104.
Article
CAS
PubMed
Google Scholar
Winkler EA, Sengillo JD, Sagare AP, Zhao Z, Ma Q, Zuniga E, Wang Y, Zhong Z, Sullivan JS, Griffin JH, et al. Blood–spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc Natl Acad Sci USA. 2014;111(11):E1035-1042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henkel JS, Beers DR, Wen S, Bowser R, Appel SH. Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. Neurology. 2009;72(18):1614–6.
Article
CAS
PubMed
Google Scholar
Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan WL, Saint-Pierre M, Dury RJ, Alata W, St-Amour I, Mason SL. Cerebrovascular and blood–brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol. 2015;78(2):160–77.
Article
PubMed
Google Scholar
Agus F, Crespo D, Myers RH, Labadorf A. The caudate nucleus undergoes dramatic and unique transcriptional changes in human prodromal Huntington’s disease brain. BMC Med Genomics. 2019;12(1):137.
Article
PubMed
PubMed Central
CAS
Google Scholar
Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218–28.
Article
CAS
PubMed
Google Scholar
Lim RG, Quan C, Reyes-Ortiz AM, Lutz SE, Kedaigle AJ, Gipson TA, Wu J, Vatine GD, Stocksdale J, Casale MS, et al. Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood–brain barrier deficits. Cell Rep. 2017;19(7):1365–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silvestroni A, Faull RLM, Strand AD, Möller T. Distinct neuroinflammatory profile in post-mortem human Huntington’s disease. NeuroReport. 2009;20(12):1098.
Article
PubMed
Google Scholar
Li JQ, Tan L, Yu JT. The role of the LRRK2 gene in Parkinsonism. Mol Neurodegener. 2014;9:47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH. Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol. 2005;57(2):176–9.
Article
CAS
PubMed
Google Scholar
Su R, Zhou T. Alpha-synuclein induced immune cells activation and associated therapy in Parkinson’s disease. Front Aging Neurosci. 2021;13:769506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hongge L, Kexin G, Xiaojie M, Nian X, Jinsha H. The role of LRRK2 in the regulation of monocyte adhesion to endothelial cells. J Mol Neurosci. 2015;55(1):233–9.
Article
PubMed
CAS
Google Scholar
Ortiz GG, Pacheco-Moisés FP, Macías-Islas M, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED, Hernández-Navarro VE, Sánchez-López AL, Alatorre-Jiménez MA. Role of the blood–brain barrier in multiple sclerosis. Arch Med Res. 2014;45(8):687–97.
Article
CAS
PubMed
Google Scholar
Ortiz GG, Pacheco-Moises FP, Macias-Islas MA, Flores-Alvarado LJ, Mireles-Ramirez MA, Gonzalez-Renovato ED, Hernandez-Navarro VE, Sanchez-Lopez AL, Alatorre-Jimenez MA. Role of the blood–brain barrier in multiple sclerosis. Arch Med Res. 2014;45(8):687–97.
Article
CAS
PubMed
Google Scholar
Minagar A, Alexander JS. Blood–brain barrier disruption in multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England). 2003;9(6):540–9.
Article
CAS
Google Scholar
Lim S, Kim WJ, Kim YH, Lee S, Koo JH, Lee JA, Yoon H, Kim DH, Park HJ, Kim HM, et al. dNP2 is a blood–brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. Nat Commun. 2015;6:8244.
Article
CAS
PubMed
Google Scholar
Hahn JS, Lannin WC, Sarwal MM. Microangiopathy of brain, retina, and inner ear (Susac’s syndrome) in an adolescent female presenting as acute disseminated encephalomyelitis. Pediatrics. 2004;114(1):276–81.
Article
PubMed
Google Scholar
Bitra RK, Eggenberger E. Review of Susac syndrome. Curr Opin Ophthalmol. 2011;22(6):472–6.
Article
PubMed
Google Scholar
Vishnevskia-Dai V, Chapman J, Sheinfeld R, Sharon T, Huna-Baron R, Manor RS, Shoenfeld Y, Zloto O. Susac syndrome: clinical characteristics, clinical classification, and long-term prognosis. Medicine (Baltimore). 2016;95(43): e5223.
Article
Google Scholar
Kayser MS, Dalmau J. The emerging link between autoimmune disorders and neuropsychiatric disease. J Neuropsychiatry Clin Neurosci. 2011;23(1):90–7.
Article
PubMed
PubMed Central
Google Scholar
Hughes RA, Allen D, Makowska A, Gregson NA. Pathogenesis of chronic inflammatory demyelinating polyradiculoneuropathy. J Peripheral Nerv Syst JPNS. 2006;11(1):30–46.
Article
Google Scholar
Kuwabara S, Misawa S. Chronic inflammatory demyelinating polyneuropathy. Adv Exp Med Biol. 2019;1190:333–43.
Article
CAS
PubMed
Google Scholar
Whitesell J. Inflammatory neuropathies. Semin Neurol. 2010;30(4):356–64.
Article
PubMed
Google Scholar
Kamm C, Zettl UK. Autoimmune disorders affecting both the central and peripheral nervous system. Autoimmun Rev. 2012;11(3):196–202.
Article
CAS
PubMed
Google Scholar
Horton E, Krishnamoorthy S, Reynolds L. Bickerstaff’s encephalitis. BMJ Case Rep. 2014;2014:05336.
Article
Google Scholar
Rosenberg GA. Neurological diseases in relation to the blood–brain barrier. J Cereb Blood Flow Metab. 2012;32(7):1139–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee RHC, Lee MHH, Wu CYC, Couto ESA, Possoit HE, Hsieh TH, Minagar A, Lin HW. Cerebral ischemia and neuroregeneration. Neural Regen Res. 2018;13(3):373–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xanthos DN, Sandkuhler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci. 2014;15(1):43–53.
Article
CAS
PubMed
Google Scholar
Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood–brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res. 2011;2(4):492–516.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimizu F, Sano Y, Takahashi T, Haruki H, Saito K, Koga M, Kanda T. Sera from neuromyelitis optica patients disrupt the blood–brain barrier. J Neurol Neurosurg Psychiatry. 2012;83(3):288–97.
Article
PubMed
Google Scholar
Papadopoulos MC, Bennett JL, Verkman AS. Treatment of neuromyelitis optica: state-of-the-art and emerging therapies. Nat Rev Neurol. 2014;10(9):493–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nat Rev Neurol. 2014;10(10):579–96.
Article
CAS
PubMed
Google Scholar
Bertsias GK, Boumpas DT. Pathogenesis, diagnosis and management of neuropsychiatric SLE manifestations. Nat Rev Rheumatol. 2010;6(6):358–67.
Article
PubMed
Google Scholar
Brito-Zeron P, Baldini C, Bootsma H, Bowman SJ, Jonsson R, Mariette X, Sivils K, Theander E, Tzioufas A, Ramos-Casals M. Sjogren syndrome. Nat Rev Dis Primers. 2016;2:16047.
Article
PubMed
Google Scholar
Berlit P. Diagnosis and treatment of cerebral vasculitis. Ther Adv Neurol Disord. 2010;3(1):29–42.
Article
PubMed
PubMed Central
Google Scholar
Rice CM, Scolding NJ. The diagnosis of primary central nervous system vasculitis. Pract Neurol. 2020;20(2):109–14.
Article
PubMed
Google Scholar
Rosenberg GA, Dencoff JE, Correa N Jr, Reiners M, Ford CC. Effect of steroids on CSF matrix metalloproteinases in multiple sclerosis: relation to blood–brain barrier injury. Neurology. 1996;46(6):1626–32.
Article
CAS
PubMed
Google Scholar
Matsukawa N, Yasuhara T, Hara K, Xu L, Maki M, Yu G, Kaneko Y, Ojika K, Hess DC, Borlongan CV. Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosci. 2009;10:126.
Article
PubMed
PubMed Central
CAS
Google Scholar
Salvador E, Shityakov S, Forster C. Glucocorticoids and endothelial cell barrier function. Cell Tissue Res. 2014;355(3):597–605.
Article
CAS
PubMed
Google Scholar
Joels M, Sarabdjitsingh RA, Karst H. Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol Rev. 2012;64(4):901–38.
Article
CAS
PubMed
Google Scholar
Johann S, Beyer C. Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia. J Steroid Biochem Mol Biol. 2013;137:71–81.
Article
CAS
PubMed
Google Scholar
Herson PS, Koerner IP, Hurn PD. Sex, sex steroids, and brain injury. Semin Reprod Med. 2009;27(3):229–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dang TN, Arseneault M, Ramassamy C. Regulation of redox-sensitive signaling pathways in rat primary astrocytes following acrolein exposure. J Alzheimer’s Dis. 2011;25(2):263–77.
Article
CAS
Google Scholar
Sayeed I, Guo Q, Hoffman SW, Stein DG. Allopregnanolone, a progesterone metabolite, is more effective than progesterone in reducing cortical infarct volume after transient middle cerebral artery occlusion. Ann Emerg Med. 2006;47(4):381–9.
Article
PubMed
Google Scholar
Sayeed I, Parvez S, Wali B, Siemen D, Stein DG. Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism for better neuroprotective effects of allopregnanolone over progesterone. Brain Res. 2009;1263:165–73.
Article
CAS
PubMed
Google Scholar
Ishrat T, Sayeed I, Atif F, Hua F, Stein DG. Progesterone and allopregnanolone attenuate blood–brain barrier dysfunction following permanent focal ischemia by regulating the expression of matrix metalloproteinases. Exp Neurol. 2010;226(1):183–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan P, Zhang X, Li Q, Zhao H, Qu J, Zhang JH, Liu X, Feng H, Chen Y. Cyclosporine A alleviated matrix metalloproteinase 9 associated blood–brain barrier disruption after subarachnoid hemorrhage in mice. Neurosci Lett. 2017;649:7–13.
Article
CAS
PubMed
Google Scholar
Arnon R, Aharoni R. Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci USA. 2004;101(Suppl 2):14593–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuerten S, Jackson LJ, Kaye J, Vollmer TL. Impact of glatiramer acetate on B cell-mediated pathogenesis of multiple sclerosis. CNS Drugs. 2018;32(11):1039–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Liu LH. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev. 2012;64(7):640–65.
Article
CAS
PubMed
Google Scholar
de Boer AG, Gaillard PJ. Drug targeting to the brain. Annu Rev Pharmacol Toxicol. 2007;47:323–55.
Article
PubMed
CAS
Google Scholar
Hervé F, Ghinea N, Scherrmann J-M. CNS delivery via adsorptive transcytosis. AAPS J. 2008;10(3):455–72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Egleton RD, Davis TP. Bioavailability and transport of peptides and peptide drugs into the brain. Peptides. 1997;18(9):1431–9.
Article
CAS
PubMed
Google Scholar
Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci. 2019;12:1019.
Article
PubMed
PubMed Central
Google Scholar
Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood–brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res. 2007;24(9):1745–58.
Article
CAS
PubMed
Google Scholar
Bellettato CM, Scarpa M. Possible strategies to cross the blood–brain barrier. Ital J Pediatr. 2018;44(Suppl 2):131.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie J, Shen Z, Anraku Y, Kataoka K, Chen X. Nanomaterial-based blood–brain-barrier (BBB) crossing strategies. Biomaterials. 2019;224: 119491.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Design. 2014;20(10):1422–49.
Article
CAS
Google Scholar
Begley DJ. ABC transporters and the blood–brain barrier. Curr Pharm Design. 2004;10(12):1295–312.
Article
CAS
Google Scholar
Preston JE, Joan Abbott N, Begley DJ. Transcytosis of macromolecules at the blood–brain barrier. Adv Pharmacol. 2014;71:147–63.
Article
CAS
PubMed
Google Scholar
Hersh DS, Wadajkar AS, Roberts N, Perez JG, Connolly NP, Frenkel V, Winkles JA, Woodworth GF, Kim AJ. Evolving drug delivery strategies to overcome the blood brain barrier. Curr Pharm Des. 2016;22(9):1177–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomed. 2014;9:2241–57.
Article
Google Scholar
Pathan AS, Iqbal Z, Zaidi MAS, Talegaonkar S, Vohra D, Jain KG, Azeem A, Jain N, Lalani RJ, Khar KR, et al. CNS drug delivery systems: novel approaches. Recent Pat Drug Deliv Formul. 2009;3(1):71–89.
Article
CAS
PubMed
Google Scholar
Bodor N, Buchwald P. Recent advances in the brain targeting of neuropharmaceuticals by chemical delivery systems. Adv Drug Deliv Rev. 1999;36(2–3):229–54.
Article
CAS
PubMed
Google Scholar
Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood–brain barrier. Perspect Medicin Chem. 2014;6:11–24.
Article
PubMed
PubMed Central
Google Scholar
Löscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol. 2005;76(1):22–76.
Article
PubMed
CAS
Google Scholar
Huttunen J, Gynther M, Huttunen KM. Targeted efflux transporter inhibitors—a solution to improve poor cellular accumulation of anti-cancer agents. Int J Pharm. 2018;550(1):278–89.
Article
CAS
PubMed
Google Scholar
Pardridge WM, Boado RJ. Reengineering biopharmaceuticals for targeted delivery across the blood–brain barrier. Methods Enzymol. 2012;503:269–92.
Article
CAS
PubMed
Google Scholar
Pardridge WM, Boado RJ. Reengineering biopharmaceuticals for targeted delivery across the blood–brain barrier. Method Enzymol. 2012;503:269–92.
Article
CAS
Google Scholar
Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Hamano N, Lgfdi SD, Chougule M, Shoyele SA, Gupta U, Ajazuddin, et al. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opin Drug Deliv. 2018;15(6):589–617.
Article
CAS
PubMed
Google Scholar
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomanin R, Zanetti A, Zaccariotto E, D’Avanzo F, Bellettato CM, Scarpa M. Gene therapy approaches for lysosomal storage disorders, a good model for the treatment of mendelian diseases. Acta Paediatr. 2012;101(7):692–701.
Article
CAS
PubMed
Google Scholar
Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, Corbo C, Tasciotti E. Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials. 2017;147:155–68.
Article
CAS
PubMed
Google Scholar
Spencer AP, Torrado M, Custódio B, Silva-Reis SC, Santos SD, Leiro V, Pêgo AP. Breaking barriers: bioinspired strategies for targeted neuronal delivery to the central nervous system. Pharmaceutics. 2020;12(2):192.
Article
CAS
PubMed Central
Google Scholar
Sabu C, Rejo C, Kotta S, Pramod K. Bioinspired and biomimetic systems for advanced drug and gene delivery. J Control Release. 2018;287:142–55.
Article
CAS
PubMed
Google Scholar
Merkel SF, Andrews AM, Lutton EM, Mu D, Hudry E, Hyman BT, Maguire CA, Ramirez SH. Trafficking of adeno-associated virus vectors across a model of the blood–brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells. J Neurochem. 2017;140(2):216–30.
Article
CAS
PubMed
Google Scholar
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther. 2016;27(7):478–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agrawal M, Saraf S, Saraf S, Antimisiaris SG, Chougule MB, Shoyele SA, Alexander A. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018;281:139–77.
Article
CAS
PubMed
Google Scholar
Pardridge WM. Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nigam K, Kaur A, Tyagi A, Nematullah M, Khan F, Gabrani R, Dang S. Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles. Drug Deliv Transl Res. 2019;9(5):879–90.
Article
CAS
PubMed
Google Scholar
Greene C, Campbell M. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules. Tissue Barriers. 2016;4(1): e1138017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Palma L, Bruni G, Fiaschi AI, Mariottini A. Passage of mannitol into the brain around gliomas: a potential cause of rebound phenomenon. A study on 21 patients. J Neurosurg Sci. 2006;50(3):63–6.
CAS
PubMed
Google Scholar
Sanovich E, Bartus RT, Friden PM, Dean RL, Le HQ, Brightman MW. Pathway across blood–brain barrier opened by the bradykinin agonist, RMP-7. Brain Res. 1995;705(1–2):125–35.
Article
CAS
PubMed
Google Scholar
Prados MD, Schold SC Jr, Fine HA, Jaeckle K, Hochberg F, Mechtler L, Fetell MR, Phuphanich S, Feun L, Janus TJ, et al. A randomized, double-blind, placebo-controlled, phase 2 study of RMP-7 in combination with carboplatin administered intravenously for the treatment of recurrent malignant glioma. Neuro Oncol. 2003;5(2):96–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Black KL, Baba T, Pardridge WM. Enzymatic barrier protects brain capillaries from leukotriene C4. J Neurosurg. 1994;81(5):745–51.
Article
CAS
PubMed
Google Scholar
Arvanitis CD, Ferraro GB, Jain RK. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41.
Article
CAS
PubMed
Google Scholar
Hau P, Fabel K, Baumgart U, Rümmele P, Grauer O, Bock A, Dietmaier C, Dietmaier W, Dietrich J, Dudel C, et al. Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer. 2004;100(6):1199–207.
Article
CAS
PubMed
Google Scholar
Beier CP, Schmid C, Gorlia T, Kleinletzenberger C, Beier D, Grauer O, Steinbrecher A, Hirschmann B, Brawanski A, Dietmaier C, et al. RNOP-09: pegylated liposomal doxorubicine and prolonged temozolomide in addition to radiotherapy in newly diagnosed glioblastoma—a phase II study. BMC Cancer. 2009;9:308.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ananda S, Nowak AK, Cher L, Dowling A, Brown C, Simes J, Rosenthal MA. Phase 2 trial of temozolomide and pegylated liposomal doxorubicin in the treatment of patients with glioblastoma multiforme following concurrent radiotherapy and chemotherapy. J Clin Neurosci. 2011;18(11):1444–8.
Article
CAS
PubMed
Google Scholar
Sanovich E, Bartus RT, Friden PM, Dean RL, Le HQ, Brightman MW. Pathway across blood–brain barrier opened by the bradykinin agonist, RMP-7. Brain Res. 1995;705(1):125–35.
Article
CAS
PubMed
Google Scholar
Harder BG, Blomquist MR, Wang J, Kim AJ, Woodworth GF, Winkles JA, Loftus JC, Tran NL. Developments in blood–brain barrier penetrance and drug repurposing for improved treatment of glioblastoma. Front Oncol. 2018;8:462.
Article
PubMed
PubMed Central
Google Scholar
Parthsarathy V, McClean PL, Hölscher C, Taylor M, Tinker C, Jones G, Kolosov O, Salvati E, Gregori M, Masserini M, et al. A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and inflammation and stimulates neurogenesis in the APPswe/PS1ΔE9 mouse model of Alzheimer’s disease. PLoS ONE. 2013;8(1): e54769.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindgren M, Hällbrink M, Prochiantz A, Langel U. Cell-penetrating peptides. Trends Pharmacol Sci. 2000;21(3):99–103.
Article
CAS
PubMed
Google Scholar
Futaki S, Ohashi W, Suzuki T, Niwa M, Tanaka S, Ueda K, Harashima H, Sugiura Y. Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem. 2001;12(6):1005–11.
Article
CAS
PubMed
Google Scholar
Etame AB, Diaz RJ, Smith CA, Mainprize TG, Hynynen K, Rutka JT. Focused ultrasound disruption of the blood–brain barrier: a new frontier for therapeutic delivery in molecular neurooncology. Neurosurg Focus. 2012;32(1):E3.
Article
PubMed
PubMed Central
Google Scholar
Phenix CP, Togtema M, Pichardo S, Zehbe I, Curiel L. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Pharmaceut Sci. 2014;17(1):136–53.
Google Scholar
Zeng YD, Liao H, Qin T, Zhang L, Wei WD, Liang JZ, Xu F, Dinglin XX, Ma SX, Chen LK. Blood–brain barrier permeability of gefitinib in patients with brain metastases from non-small-cell lung cancer before and during whole brain radiation therapy. Oncotarget. 2015;6(10):8366–76.
Article
PubMed
PubMed Central
Google Scholar
Miller MA, Chandra R, Cuccarese MF. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci Transl Med. 2017;9(392):l0225.
Article
Google Scholar
Beauchesne P. Intrathecal chemotherapy for treatment of leptomeningeal dissemination of metastatic tumours. Lancet Oncol. 2010;11(9):871–9.
Article
CAS
PubMed
Google Scholar
Groothuis DR. The blood–brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol. 2000;2(1):45–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wijburg FA, Whitley CB, Muenzer J, Gasperini S, del Toro M, Muschol N, Cleary M, Sevin C, Shapiro E, Bhargava P, et al. Intrathecal heparan-N-sulfatase in patients with Sanfilippo syndrome type A: a phase IIb randomized trial. Mol Genet Metab. 2019;126(2):121–30.
Article
CAS
PubMed
Google Scholar
Zheng X, Shao X, Zhang C, Tan Y, Liu Q, Wan X, Zhang Q, Xu S, Jiang X. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm Res. 2015;32(12):3837–49.
Article
CAS
PubMed
Google Scholar
Chowdhary SA, Ryken T, Newton HB. Survival outcomes and safety of carmustine wafers in the treatment of high-grade gliomas: a meta-analysis. J Neurooncol. 2015;122(2):367–82.
Article
PubMed
PubMed Central
Google Scholar
Bastiancich C, Vanvarenberg K, Ucakar B, Pitorre M, Bastiat G, Lagarce F, Préat V, Danhier F. Lauroyl-gemcitabine-loaded lipid nanocapsule hydrogel for the treatment of glioblastoma. J Control Release. 2016;225:283–93.
Article
CAS
PubMed
Google Scholar
Healy AT, Vogelbaum MA. Convection-enhanced drug delivery for gliomas. Surg Neurol Int. 2015;6(Suppl 1):S59-67.
PubMed
PubMed Central
Google Scholar
Gaillard PJ, Appeldoorn CC, Dorland R, van Kregten J, Manca F, Vugts DJ, Windhorst B, van Dongen GA, de Vries HE, Maussang D, et al. Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PLoS ONE. 2014;9(1): e82331.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev. 2002;54(4):561–87.
Article
CAS
PubMed
Google Scholar
Guo L, Ren J, Jiang X. Perspectives on brain-targeting drug delivery systems. Curr Pharm Biotechnol. 2012;13(12):2310–8.
Article
CAS
PubMed
Google Scholar
Fillebeen C, Descamps L, Dehouck MP, Fenart L, Benaïssa M, Spik G, Cecchelli R, Pierce A. Receptor-mediated transcytosis of lactoferrin through the blood–brain barrier. J Biol Chem. 1999;274(11):7011–7.
Article
CAS
PubMed
Google Scholar
Lu W, Zhang Y, Tan YZ, Hu KL, Jiang XG, Fu SK. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release. 2005;107(3):428–48.
Article
CAS
PubMed
Google Scholar
Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol. 2015;73(1):137–50.
Article
CAS
PubMed
Google Scholar
Gonzalez-Carter D, Liu X, Tockary TA, Dirisala A, Toh K, Anraku Y, Kataoka K. Targeting nanoparticles to the brain by exploiting the blood–brain barrier impermeability to selectively label the brain endothelium. Proc Natl Acad Sci. 2020;117(32):19141–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):71.
Article
CAS
Google Scholar
Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, Siva Kumar N, Vekariya RL. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv. 2020;10(45):26777–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grimaldi N, Andrade F, Segovia N, Ferrer-Tasies L, Sala S, Veciana J, Ventosa N. Lipid-based nanovesicles for nanomedicine. Chem Soc Rev. 2016;45(23):6520–45.
Article
CAS
PubMed
Google Scholar
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.
Article
PubMed
PubMed Central
CAS
Google Scholar
Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx. 2005;2(1):108–19.
Article
PubMed
PubMed Central
Google Scholar
Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem. 2013;2013: 238428.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine. 2010;6(1):9–24.
Article
CAS
PubMed
Google Scholar
Neves AR, Queiroz JF, Reis S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J Nanobiotechnol. 2016;14(1):27.
Article
CAS
Google Scholar
Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C. Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev. 2007;59(6):454–77.
Article
CAS
PubMed
Google Scholar
Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):701–5.
Article
CAS
PubMed
Google Scholar
Amin MCIM, Butt AM, Amjad MW, Kesharwani P. Chapter 5—Polymeric micelles for drug targeting and delivery. In: Mishra V, Kesharwani P, Mohd Amin MCI, Iyer A, editors. Nanotechnology-based approaches for targeting and delivery of drugs and genes. London: Academic Press; 2017. p. 167–202.
Chapter
Google Scholar
Ahmed F, Photos PJ, Discher DE. Polymersomes as viral capsid mimics. Drug Dev Res. 2006;67(1):4–14.
Article
CAS
Google Scholar
Santos A, Veiga F, Figueiras A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials. 2020;13(1):65.
Article
CAS
Google Scholar
Caminade A-M, Turrin C-O. Dendrimers for drug delivery. J Mater Chem B. 2014;2(26):4055–66.
Article
CAS
PubMed
Google Scholar
Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.
Article
CAS
PubMed
Google Scholar
Kim D, Kim J, Park YI, Lee N, Hyeon T. Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent Sci. 2018;4(3):324–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI. Neuronanomedicine: an up-to-date overview. Pharmaceutics. 2019;11(3):101.
Article
CAS
PubMed Central
Google Scholar
Granada-Ramírez DA, Arias-Cerón JS, Rodriguez-Fragoso P, Vázquez-Hernández F, Luna-Arias JP, Herrera-Perez JL, Mendoza-Álvarez JG. Quantum dots for biomedical applications. Appl Surf Sci. 2018;530:411–36.
Google Scholar
He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C. Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int. 2013;2013: 578290.
PubMed
PubMed Central
Google Scholar
Teleanu RI, Gherasim O, Gherasim TG, Grumezescu V, Grumezescu AM, Teleanu DM. Nanomaterial-based approaches for neural regeneration. Pharmaceutics. 2019;11(6):266.
Article
CAS
PubMed Central
Google Scholar
Kanwar JR, Sun X, Punj V, Sriramoju B, Mohan RR, Zhou S-F, Chauhan A, Kanwar RK. Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal. Nanomedicine. 2012;8(4):399–414.
Article
CAS
PubMed
Google Scholar
Vieira DB, Gamarra LF: Multifunctional nanoparticles for successful targeted drug delivery across the blood–brain barrier. 2018.
Liu Z, Gao X, Kang T, Jiang M, Miao D, Gu G, Hu Q, Song Q, Yao L, Tu Y, et al. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem. 2013;24(6):997–1007.
Article
CAS
PubMed
Google Scholar
Tiwari MN, Agarwal S, Bhatnagar P, Singhal NK, Tiwari SK, Kumar P, Chauhan LKS, Patel DK, Chaturvedi RK, Singh MP, et al. Nicotine-encapsulated poly(lactic-co-glycolic) acid nanoparticles improve neuroprotective efficacy against MPTP-induced Parkinsonism. Free Radic Biol Med. 2013;65:704–18.
Article
CAS
PubMed
Google Scholar
Hu K, Li J, Shen Y, Lu W, Gao X, Zhang Q, Jiang X. Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations. J Control Release. 2009;134(1):55–61.
Article
CAS
PubMed
Google Scholar
Wen Z, Yan Z, Hu K, Pang Z, Cheng X, Guo L, Zhang Q, Jiang X, Fang L, Lai R. Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J Control Release. 2011;151(2):131–8.
Article
CAS
PubMed
Google Scholar
Bomprezzi R. Dimethyl fumarate in the treatment of relapsing–remitting multiple sclerosis: an overview. Ther Adv Neurol Disord. 2015;8(1):20–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou Y, Nathans J. Gpr124 controls CNS angiogenesis and blood–brain barrier integrity by promoting ligand-specific canonical Wnt signaling. Dev Cell. 2014;31(2):248–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu X, le Noble F, Yuan L, Jiang Q, de Lafarge B, Sugiyama D, Bréant C, Claes F, De Smet F, Thomas J-L, et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature. 2004;432(7014):179–86.
Article
CAS
PubMed
Google Scholar
Boyé K, Geraldo LH, Furtado J, Pibouin-Fragner L, Poulet M, Kim D, Nelson B, Xu Y, Jacob L, Maissa N, et al. Endothelial Unc5B controls blood–brain barrier integrity. Nat Commun. 2022;13(1):1169.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martin M, Vermeiren S, Bostaille N, Eubelen M, Spitzer D, Vermeersch M, Profaci CP, Pozuelo E, Toussay X, Raman-Nair J, et al. Engineered Wnt ligands enable blood–brain barrier repair in neurological disorders. Science. 2022;375(6582):eabm4459.
Article
CAS
PubMed
Google Scholar